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Lattice Green’s Function for the Diamond Lattice
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An expression for the Green’s function (GF) of diamond lattice is evaluated analytically
and numerically for a single impurity interacting with the first nearest-neighboring
host atoms. The density of states (DOS), phase shift and scattering cross-section are
expressed in terms of complete elliptic integrals of the first kind.
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1. INTRODUCTION

The lattice Green’s function is defined as (Economou, 1983; Katsura et al.,
1971; Sakaji et al., 2002a)

G(E) = �

(2π )d

∫
IBZ

F (�k)

E − E(�k)
d�k (1.1)

E(�k) is a dispersion relation, F (�k) is an appropriate function, � is the volume of
the crystal in real space, d the dimension, and IBZ denotes that the integration is
restricted to the first Brillouin zone (Hijjawi et al., 2004; Hijjawi and Khalifeh,
2002; Morita and Horiguci, 1971; Inoue, 1974; Sakaji et al., 2002b).

In this paper, we report on lattice Green’s function and the article is organized
as follows: Section 2 is devoted to the general definition of the diagonal lattice
Green’s function and its form inside and outside the band, for the diamond lattice
in terms of complete elliptic integrals of the first kind. This section also contains
the formulae for the density of states, phase shift and scattering cross-section for
a point defect case. In Section 3 we present the results and discussion.

Finally, the details of the green’s function derivation inside the band are given
in Appendix A.
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2. THE DIAMOND LATTICE GREEN’S FUNCTION

The diagonal Green’s function for the diamond lattice with nearest neighbor
interaction is defined as (Ishioka and Koiwa, 1978; Koiwa and Ishioka, 1979)

G0(L,L; E)

= 1

π3

π∫
0

π∫
0

π∫
0

dx dy dz

E − (1 + cos x cos y + cos x cos z + cos y cos z)
, E > 4

(2.1)

This case is of practical interest in calculating the correlation factor appearing
in the diffusion via a vacancy mechanism (Ishioka and Koiwa, 1978).

Integrating the earlier equation and using the method of analytic continua-
tion, the diagonal Green’s function outside the band has the form (Guttmann and
Prellberg, 1993; Ishioka and Koiwa, 1978; Joyce, 1973; Koiwa and Ishioka, 1979)

G0(L,L; E) = 4

π2E
K(k+)K(k−), E > 4 (2.2)

where

k2
± = 1

2

(
1 ∓ 4

√
E − 1

E3/2
− (E − 2)

√
(E − 4)

E3/2

)
, (2.3)

Green’s function for the perfect lattice inside and outside the band can be
written as (all mathematical manipulations are given in Appendix).

G0(L,L; E) =



4
π2E

K(k+)K(k−), E > 4

2
π2E

K(v+)K(u−)+K(v−)K(u+)+i[K(v+)K(u+)−K(v−)K(u−)]
[(X2++1)(X2−+1)]1/4 , 0 < E < 1


 ,

(2.4)

where

X∓ = ±4
√

1 − E

E3/2
− (E − 2)

√
(4 − E)

E3/2
, (2.5)

and

v2
± = 1

2

(
1 ±

√
X2−

X2− + 1

)
(2.6)

u2
± = 1

2

(
1 ±

√
X2+

X2+ + 1

)
(2.7)
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Therefore, the density of states is

DOS0(E) = 2

π3E

[K(v+)K(u+) − K(v−)K(u−)]

[(X2− + 1)(X2+ + 1)]1/4
, 0 < E < 1 (2.8)

where K(v±) and K(u±) are the complete elliptic integrals of the first kind.
We consider the case where perfect periodicity is destroyed by modifying just

one site (L site). The situation can be thought of physically as arising by substituting
the host atom at the L-site by a foreign atom (Doniach and Sondheimer, 1974;
Economou, 1983), i.e., a localized zero-range potential of strength ε′ is introduced.
In the tight-binding model, ε′ is proportional to charge difference between the
impurity outer electrons and those of the host atom.

Thus, our diagonal Green’s function of the diamond lattice for the single
impurity case can be written as

G(L,L,E)

=




4K(k+)K(k−)

π2E − 4ε′K(k+)K(k−)
, E > 4

π2

2 E[(X2
+ + 1)(X2

− + 1)]1/4[K(v+)K(u−) + K(v−)K(u+)
+ i(K(v+)K(u+) − K(v−)K(u−))] − 2ε′[K2(v+)
+ K2(v−)][K2(u+) + K2(u−)]/[

π2

2 E((X2
+ + 1)(X2

− + 1))1/4 − ε′(K(v+)K(u−)

+K(v−)K(u+))
]2

+ ε2[K(v+)K(u+) − K(v−)K(u−)]2, 0 < E < 1

(2.9)

The density of states can be written as (Economou, 1983):

DOS(E) = π2

2
E[(X2

+ + 1)(X2
− + 1)]1/4(K(v+)K(u+) − K(v−)K(u−))/

[
π2

2
E((X2

+ + 1)(X2
− + 1))1/4 − ε′(K(v+)K(u−) + K(v−)K(u+))

]2

+ ε2[K(v+)K(u+) − K(v−)K(u−)]2, 0 < E < 1 (2.10)

The S-wave phase shift, δ0, is defined as (Doniach and Sondheimer, 1974):

tan δo = πDos0(E)
1
ε′ − ReG0(E)

, (2.11)
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Here, ReG0 (E) refers to the real part the Green’s function inside the band.
After some mathematical manipulations, we obtain:

tan δo = K(v+)K(u+) − K(v−)K(u−)

π2E[(X2
+ + 1)(X2

− + 1)]1/4

2ε′ − [K(v+)K(u−) + K(v−)K(u+)]

,

(2.12)
The cross-section, σ , is defined as (Doniach and Sondheimer, 1974):

σ = 4π

P 2

π2[DOS0(E)]2[
ReG0(E) − 1

ε′
]2 + π2[DOS0(E)]2

, (2.13)

Here, P refers to the electron momentum.
Therefore, the cross-section becomes

σ = 4π

P 2
[K(v+)K(u+) − K(v−)K(u−)]2

/[
K(v+)K(u−) + K(v−)K(u+)

− π2E[(X2
+ + 1)(X2

− + 1)]1/4

2ε′

]2

+ [K(v+)K(u+) − K(v−)K(u−)]2.

(2.14)

3. RESULTS AND DISCUSSION

The results for the diamond lattice are shown in Figs. 1–9. Figure 1 shows the
density of states for the pure lattice. It diverges as E = 0 and falls off exponentially
as expected from Eq. (2.4). The real and imaginary parts of Green’s Function for
the pure lattice are displayed in Figs. 2 and 3, they have the same behavior as

Fig. 1. The density of states for the perfect diamond lattice.
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Fig. 2. Real part of Green’s function for the perfect diamond lattice.

noted previously. Figure 4 shows the density of states for the diamond lattice with
single impurity for different potential strengths ε′ (−0.7, −0.3,0.0,0.3, and 0.7).
For ε′ = 0.0 it diverges as E goes to zero. The peak value varies with the potential
strengths and reaches its maximum at ε′ = 0.3. The divergence of the density of
states is removed by adding such impurities. Figure 5 shows the density of states
for the diamond in three dimensions with one axis representing potential strengths
ε′ varying between −1 and 1 (arbitrary units), whereas the second axis is energy
scale varying between 0 and 1 as indicated in the formalism.

The phase shift, δ0, is defined as the shift in the phase of the wave function due
to the presence of the impurity potential. Figure 6 displays, δ0, for the diamond with

Fig. 3. Imaginary part of Green’s function for the perfect diamond lattice.
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Fig. 4. The density of states (DOS) for the diamond lattice with single impurity for
different potential strengths ε′ (−0.7, −0.3, 0.0, 0.3, and 0.7).

single impurity for different potential strengths ε′. For ε′ = 0.0, δ0, vanishes as
the potential is turned off (perfect lattice); this behavior is clear from the definition
of δ0. The phase shift is always negative for all negative potential strengths ε′, the
same behavior occurs for ε′ ≥ 0.95. In the range between ε′ = 0.0 and 0.35, δ0,
is positive. In the range ε′ between 0.35 and 0.94 we have discontinuity as shown

Fig. 5. Three-dimensional density of states (DOS) for the diamond lattice
with single impurity for different potential strengths ε′ varying between
−1 and 1 (arbitrary units).
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Fig. 6. The phase shift, δ0, for the diamond lattice with single impurity for different
potential strengths ε′ (−0.7, −0.3, 0.0, 0.3, and 0.7).

in Fig. 6. The phase shift is separated into two regions around the discontinuity
point: a positive right-hand region, which decreases as E increases, and a negative
left-hand region, which increases as E increases. The discontinuity point moves
to the right by increasing the values of ε′. In Fig. 7 the phase shift, δ0, for the

Fig. 7. The phase shift, δ0, in three dimensions for the diamond lattice with
single impurity for different potential strengths ε′ varying between −1 and 1
(arbitrary units).
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Fig. 8. The cross-section, σ , for the diamond lattice with single impurity for
different potential strengths ε′ (−0.7, −0.3,0.0,0.3, and 0.7).

diamond lattice with single impurity is shown for potential strengths ε′ varying
between −1 and 1 (arbitrary units).

The cross-section, σ , is defined as the area an impurity atom presents to the
incident electron. It is related to some physical quantities such as the conductivity
in metals. Figure 8 shows the cross-section, σ , for the diamond lattice with single

Fig. 9. The cross-section, σ , in three dimensions for the diamond lattice with
single impurity for different potential strengths ε′ varying between −1 and 1
(arbitrary units).
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impurity for different potential strengths, ε′. The values are all positive since σ

can be viewed as a sort of probability. For ε′ = 0.00, the cross-section vanishes
as the potential is turned off (perfect lattice). Peak value varies with the potential
strength, it increases as ε′ increases in range between 0.0 < ε′ < 1.0 and increases
as ε′ decreases in range between −1.0 < ε′ < 0.0. Figure 9 displays the cross-
section, σ , in three dimensions for the diamond lattice with single impurity for
potential strengths ε′ varying between −1 and 1 (arbitrary units).
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APPENDIX A

Derivation of Green’s function for the diamond lattice inside the band in this
appendix we derive an expression for Green’s function inside the band in terms of
complete elliptic integral of the first kind. Green’s function for the diamond lattice
outside the band is given by (Guttmann and Prellberg, 1993; Ishioka and Koiwa,
1978; Joyce, 1973; Koiwa and Ishioka, 1979):

G0(L,L; E) = 4

π2E
K(k+)K(k−), (A.1)

where

k2
± = 1

2
(1 + Z±), (A.2)

and

Z± = ∓4
√

E − 1

E3/2
− (E − 2)

√
(E − 4)

E3/2
, (A.3)

or in the range E enclosed between 0 and 1

k2
± = 1

2
(1 + iX∓), (A.4)

where

X∓ = ±4
√

1 − E

E3/2
− (E − 2)

√
(4 − E)

E3/2
, (A.5)

The complete elliptic integral of the first kind is expressed as (Bateman
Manuscript Project, 1963; Gradshteyn and Ryzhik, 1965; Slater, 1966)

K(k) = π

2
2F1

(
1

2
,

1

2
, 1, k2

)
(A.6)

where 2F1
(

1
2 , 1

2 , 1, k2
)

is the Gauss hypergeometric function.
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Kummer’s identity is defined as (Gradshteyn and Ryzhik, 1965):

2F1

(
1

4
,

1

4
, 1, β−1

±

)
= 2F1

(
1

2
,

1

2
, 1,

1

2

(
1 −

√
1 − β−1

±

))
(A.7)

Substituting (A.7) in (A.1) we have

G0(E) = 2F1
(

1
4 , 1

4 ; 1; β−1
+
)

2F1
(

1
4 , 1

4 ; 1; β−1
−
)

E
(A.8)

where

β−1
± = 1 + X2

∓ (A.9)

Using the following transformations (Bateman Manuscript Project, 1963; Slater,
1966):

2F1

(
1

4
,

1

4
; 1; β−1

±

)
= β

1/4
±

[(
�
(

1
4

))2
2
√

π3
2F1

(
1

4
,

1

4
;

1

2
; 1 − β±

)

+
√

β± − 1
2
√

π(
�
(

1
4

))2 2F1

(
3

4
,

3

4
;

3

2
; 1 − β±

)]
, (A.10)

with(
�
(

1
4

))2
√

π3
2F1

(
1

4
,

1

4
;

1

2
; 1 − β±

)

= 2F1

(
1

2
,

1

2
; 1;

1 + √
1 − β±
2

)
+ 2F1

(
1

2
,

1

2
; 1;

1 − √
1 − β±
2

)
, (A.11)

and

4
√

π(
�
(

1
4

))2√1 − β±2F1

(
3

4
,

3

4
;

3

2
; 1 − β±

)

= 2F1

(
1

2
,

1

2
; 1;

1

2
(1 −

√
1 − β±)

)
− 2F1

(
1

2
,

1

2
; 1;

1

2

(
1 +

√
1 − β±

))
,

(A.12)

Substituting (A.11) and (A.12) in (A.10) we obtain

2F1

(
1

4
,

1

4
; 1; β−1

±

)
= 1

2
β

1/4
±

[
(1 + i)2F1

(
1

2
,

1

2
; 1;

1

2

(
1 +

√
1 − β±

))

+ (1 − i)2F1

(
1

2
,

1

2
; 1;

1

2

(
1 −

√
1 − β±

))]
, (A.13)
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Or in terms of the complete elliptic integral of the first kind

2F1

(
1

4
,

1

4
; 1; β−1

±

)

= β
1/4
±
π


(1 + i)K



√

1 + √
1 − β±
2


+ (1 − i)K



√

1 − √
1 − β±
2




 ,

(A.14)

Substituting (A.14) in (A.8) then we obtain

G0(L,L,E) = β
1/4
− β

1/4
+

π2E


(1 + i)K



√

1 + √
1 − β−
2




+ (1 − i)K



√

1 − √
1 − β−
2






(1 + i)K



√

1 + √
1 − β+
2




+ (1 − i)K



√

1 − √
1 − β+
2




 , (A.15)

then

G0(L,L,E) = 2

π2E
[(Z2

+ + 1)(Z2
− + 1)]−1/4(K(v+)K(u−)

+K(v−)K(u+) + i(K(v+)K(u+) − K(v−)K(u−))),

(A.16)

where

v2
± = 1

2

(
1 ±

√
X2−

X2− + 1

)
(A.17)

u2
± = 1

2

(
1 ±

√
X2+

X2+ + 1

)
(A.18)

If we have a single impurity then Green’s function is defined as (Economou,
1983):

G(L,L,E) = G0(L,L,E)

1 − ε′G0(L,L,E)
(A.19)
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After some mathematical manipulation, Eq. (A.19) becomes.

G(L,L,E) = π2

2
(E + 1)[(Z2

+ + 1)(Z2
− + 1)]1/4[K(v+)K(u−) + K(v−)K(u+)

+ i(K(v+)K(u+) − K(v−)K(u−))] − 2ε′[K2(v+) + K2(v−)]

× [K2(u+) + K2(u−)]
/[π2

2
(E + 1)((Z2

+ + 1)(Z2
− + 1))1/4

− ε′(K(v+)K(u−) + K(v−)K(u+))
]2

+ ε2[K(v+)K(u+) − K(v−)K(u−)]2. (A.20)

Thus, the S-phase shift and scattering cross-section can be evaluated in terms
of complete elliptic integrals of the first kind as shown in the text.
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